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vestigation9 on dilute solutions of GR-S fractions 
indicates an increase in <t> with increasing concen­
tration. I t may be significant that the <j> values 
for the GR-S solutions were two to three times 
higher than those for the present polyisobutylene 
solutions. 

It is important to note that the ratio of rjsp/c 
at zero rate of shear to its value as ordinarily 
measured in a viscometer operating at a standard 
shearing stress increases as the concentration is de­
creased. This circumstance arises because y 
decreases with increasing concentration owing to 
the increase in viscosity. Ordinary extrapolation 
to infinite dilution applied to measurements made 
with a single viscometer fails, therefore, to reduce 
the magnitude of the error arising from non-New­
tonian flow. This is especially important for high 
molecular weight polymers in good solvents. 
Failure to correct for this non-Newtonian effect 
will, for example, distort the observed viscosity-
temperature and viscosity-concentration relation­
ships. In order to obtain an accurate value of the 
intrinsic viscosity, it is necessary to carry out a 
suitable extrapolation to zero rate of shear. Em­
ploying equations (5) and (6), it is now possible 
to make such extrapolations for solutions of poly­
isobutylene for which M < 2 X 106 and rjT < 2. 

Certain qualitative observations concerning the 
dependence of <f> on [rj] and M expressed in equation 

(9) Unpublished results obtained in these laboratories. 

Introduction 
In the treatment of the properties of very 

dilute polymer solutions it is convenient to repre­
sent the molecule as a statistical distribution of 
chain elements, or segments, about the center of 
gravity. The average distribution of segments 
for a chain polymer molecule is approximately 
Gaussian2; its breadth depends on the molecular 
chain length and on the thermodynamic inter­
action between polymer segments and solvent. 
The intrinsic viscosity may be regarded as a meas­
ure of the ratio of the effective hydrodynamic 
volume Ve of the polymer in a given solvent to its 

O) This investigation was carried out at Cornell University in con­
nection with the Government Research Program on Synthetic Rubber 
under contract with the Office of Rubber Reserve, Reconstruction 
Finance Corporation. 

(2) P. Debye and I. M. Krieger (unpublished) have shown that 
the average distribution of each segment about the center of gravity is 
exactly Gaussian for a random chain unperturbed by intramolecular 
interactions. 

(6) can be made. According to this equation, the 
departure from Newtonian behavior for solutions 
of a given polyisobutylene fraction is greater in 
a good than in a poor solvent, <f> increasing approxi­
mately as [17 ]2. In the better solvent, the volume 
of the domain of a single polymer molecule is 
larger. The number of intrachain entanglements 
is thus diminished and hence the polymer is more 
deformable. Since the forces acting on the coiled 
polymer molecule increase as the volume of the 
domain increases, and since these forces presum­
ably become more effective in distorting and orient­
ing the polymer molecule in the flow field as the 
deformability increases, both of these factors may 
contribute toward the observed increase in <j>. 
On the other hand, if polyisobutylenes of different 
M are dissolved in different solvents so chosen" that 
the intrinsic viscosities are equal, the value of 0 
will be lower for the polymer of highest molecular 
weight. This may be explained by a higher 
concentration of intrachain entanglements in the 
more densely populated domain of the high molec­
ular weight polymer, which therefore is rendered 
less deformable. 

The above linear relationship between In 7?sp 
and 7 does not agree with the predictions of the 
theory of Kuhn and Kuhn10 according to which 
7?3p should decrease initially with y2. 

(10) W. Kuhn and H. Kuhn, J. Colloid Set., 3, H (1948). 
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molecular weight M; i. e., [17] oc Re
3/M. The recent 

theories of Debye and Bueche,3 Kirkwood and 
Riseman,4 and of Brinkman6 show that for suf­
ficiently large chain lengths the effective hydro-
dynamic radius Re must vary directly with a linear 
parameter of the Gaussian distribution characteriz­
ing the polymer in solution. Convenient linear 
parameters for this purpose are the root-mean-
square distance ^r2 between the ends of the 
polymer chain, or the root-mean-square distance 
v s2 of the segments from the center of gravity 

(». e., the radius of gyration of the dissolved mole­
cule). The above conclusion had been anticipated 
previously by various authors6 but the recent 

(3) P. Debye and A. M. Bueche, J. Chem. Phys., 16, 573 (1948). 
(4) J. G. Kirkwood and J. Riseman, ibid., 16, 565 (1948). 
(5) H. C. Brinkman, Applied Set. RtS., Al , 27 (1947). 
(6) W. Kuhn, Kolloid Z., 68, 2 (1934); W. Kuhn and H. Kuhn, 

HeIv. CMm. Acta, 26, 1394 (1943); P. J. Flory, / . Chem. Phys., 13, 
453 (1945). 
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Treatment of Intrinsic Viscosities1 

BY P. J. FLORY AND T. G Fox, JR. 

An improved derivation is given for the relationship between the configurational dimensions of a polymer molecule in solu­
tion and the thermodynamic interaction between polymer segments and solvent molecules. The connection between in­
trinsic viscosity and molecular configuration is discussed in the light of recent theories, and general procedures for treating 
intrinsic viscosity data are given. The root-mean-square end-to-end distance for the polymer molecule when the net 
thermodynamic interaction between segments and solvent is zero may be computed from suitable viscosity measurements. 
The influence of hindrance to free rotation on the polymer configuration, unperturbed by thermodynamic interactions with 
the solvent medium, is obtained directly from this dimension. The influence of thermodynamic interactions on chain di­
mensions is considered separately. Parameters expressing the heat and entropy of dilution of polymer segments with sol­
vent may be deduced from intrinsic viscosity measurements at different temperatures. 
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theories3,4,5 are more specific in regard to the 
conditions under which the above mentioned 
proportionality should prevail. 

For a random chain devoid _of intramolecular 
interactions between segments, r2 (and s2 as well) 
is proportional to the number of segments in the 
chain, and hence to the molecular weight M. 
This is true regardless of the steric restrictions due 
to interactions between neighboring segments and 
of other restrictions on rotations about bonds of 
the chain, provided that the chain possesses a de­
gree of flexibility and that it is sufficiently long.7 

Intramolecular interactions between segments sep­
arated by many intervening segments along the 
chain (which are referred to here as "long range 
interactions" to distinguish them from the more 
specific steric "short range interactions" between 
near neighbor segments along the polymer chain) 
may be considered to alter the linear dimensions 
of the polymer by a factor a.8 Hence, the linear 
dimensions of the polymer coil will vary as aMl/*, 
from which it follows that the intrinsic viscosity 
[77] should vary as azMV', provided that the effec­
tive hydrodynamic radius Re varies as the linear 
dimensions of the coil. The intrinsic viscosity 
may be written 

fo] = KMxha> (1) 

If the molecular chain length is large enough to 
assure that the above proportionality holds, K 
will assume a constant value independent of M 
and of the solvent; otherwise, K will vary (in­
crease) with M. 

The experimentally measured intrinsic viscosity 
of a chain polymer in a good solvent invariably 
is found to increase approximately with a power 
of M greater than one-half over a wide range in 
molecular weight; the exponent usually lies in the 
range from 0.6 to 0.8. According to equation (1), 
this enhanced dependence on molecular weight might 
be ascribed to an increase of either a or K with 
increase in M. Debye and Bueche3 and Kirkwood 
and Riseman4 have chosen the latter alternative, 
according to which a is tacitly assumed to be very 
nearly independent of JIf while K increases with 
if.9 However, if reasonable values for the Stokes 
law radii of polymer segments are assumed, in­
spection of their expressions reveals that K should 
closely approach its asymptotic upper limit for 
polymers having molecular weights above about 
10,000 to 50,000. In order to fit calculated values 
of KMl/i to the observed intrinsic viscosity-
molecular weight relationship for polystyrene in 
benzene under the assumption that a3 is constant, 
it is necessary to assign to the polymer segment a 
Stokes law radius between one and two orders of 
magnitude lower than the mean radius of a chain 
unit. 

Interactions between remotely connected seg­
ments of the given chain arise as consequences of 

(7) See W. Kuhn, Kolloid Z., 87, 3 (1939). 
(8) P. J. Flory, J. Chem. Phys., IT, 303 (1949). 
(9) It is to be noted that the K denned here and used henceforth 

includes the parameter (0 of ref. (10)) expressing the departure of the 
hydrodynamic volume from proportionality to the cube of the dimen­
sion of the polymer coil for low M, or, in the language of Debye and 
Bueche,* the effect of flow permeation of the polymer coil. Thus, K 
of the present paper corresponds to Kvt> of ref. (10). 

the finite volume of each segment from which all 
other segments are excluded, and of the net energy 
of interaction between segments which happen to 
be in contact. A calculation to take into account 
the spatial interference is equivalent to the cal­
culation of the configurational probability of a mix­
ture of solvent with polymer segments,8 from which 
the entropy of mixing may be derived in the usual 
manner. The spatial interference may be dealt 
with, therefore, through consideration of the 
entropy of mixing, and the effect of the energy 
of interaction between polymer and solvent on 
polymer configuration may be treated simulta­
neously through introduction of the heat of mixing.8 

While the influence of the heat of mixing on poly­
mer dimensions is widely recognized, spatial inter­
ference of segments, corresponding to the entropy 
of mixing, usually has been regarded as of minor 
importance. The entropy and heat of dilution 
ordinarily are similar in magnitude, and they 
depend on the segment concentration in the same 
manner in dilute solutions. Hence, it follows 
that spatial interference of segments should be 
comparable in importance to the energy of mixing 
in its influence on polymer dimensions, i. e., on 
a. 

Expression of these concepts in approximate 
quantitative form has led to the following equation 
relating a to M and thermodynamic factors8,10 

« » - « ' = C(I - e/T)MVt (2) 
where C and 0 depend on the heat and entropy of 
dilution parameters characterizing the given poly­
mer-solvent pair. According to this equation, 
a should increase with M without limit,11 which is 
contrary to conclusions reached by other investiga­
tors.12,18 Experiments10 have shown that the 
intrinsic viscosities of polyisobutylene fractions in 
cyclohexane, benzene, toluene and carbon tetra­
chloride depend on the molecular weight (from 
104 to 106) and temperature (0 to 90°) in close 
accordance with the predictions of equation (2) 
in conjunction with equation (1) assuming K to be 
constant. The same value was observed for K 
in different solvents, and the 9's for the poor 
solvents, benzene and toluene, agreed (within 5°) 
with the independently measured critical miscibility 
temperatures for high molecular weight polyiso­
butylene fractions in these solvents in accordance 
with theory. Furthermore, the observed depend­
ences of [TJ] on both M and T could not be ac­
counted for by ascribing to K a value less than its 
asymptotic limit, in which case K should increase 
with M and decrease with T in a poor solvent. 
There appears to be no necessity, from an experi­
mental point of view, of postulating a variation in 
K within the molecular weight range ordinarily of 
interest. Hence, an unrealistic value for the 

(10) T. G Fox, Jr., and P. J. Flory, J. Phys. Colloid Chem., 53, 197 
(1949). 

(11) Intrinsic viscosity measurements.10 and measurements of the 
angular dissymmetry of scattered light as well, readily show that the 
ratio of the dimensions of a polymer molecule in a good and in a poor 
solvent increases steadily with M. (See E. D. Kunst, Rec. trav. Mm., 
69, 125 (1950), and P. Outer, C. I. Carr and B. H. Zimm, J. Chem. 
Phys., 18, 830 (1950).) Such experiments demonstrate in a most direct 
manner that a depends on M. 

(12) J. J. Hermans, Rec. trav. Mm. Pays-Bas, 69, 220 (1950). 
(13) E. W. Montroll, J. Chem. Phys., 18, 734 (1950). 
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Stokes law radius for the polymer segment is not 
required. 

In the present paper a simplified derivation is 
given of the relationship, corresponding to equa­
tion (2), expressing a as a function of M, T and 
thermodynamic parameters. The lat ter are in­
troduced in a more appropriate manner and C 
is expressed in an improved form. Preferred 
methods of application of the theoretical relation­
ships to experimental da ta are discussed. 

Treatment of Long Range Intramolecular Inter­
actions.—The free energy change for the process 
of mixing x segments ( the number per molecule) 
with solvent t o yield a distr ibution equivalent to 
the average spatial distr ibution of a polymer 
molecule will be considered. In the absence of 
intramolecular interactions this distribution would 
be given by 

X-, = *(0'/*-V.)« exp (-fo'V)47iV A$i (3) 

where Xj is the number of segments occurring in the 
spherical shell of radius s$ from the center of gravity 
and of thickness ASJ, and 

P'0 = Vi/zT; - 3 / V ^ (4)'* 

where r% is the mean-square distance between the 
ends of the polymer chain in the absence of intra­
molecular interactions. The spatial distribution 
of segments in the actual molecule wherein intra­
molecular interactions are operative is assumed to 
be uniformly expanded by a factor a. I t is con­
venient for present purposes to focus at tention on a 
given set of segments, namely, those Xj, which would 
occur within the region Sj to Sj + As1 if a were 
equal to uni ty . In the equilibrium configuration 
of the polymer molecule they will occupy the 
spherical shell between asj and a(sj + As1). Let 
AJFJ represent the free energy of mixing the x-: 

segments with 4ira35j2A5j(l — 1I2J)NZv1 solvent 
molecules, where v2j is the volume fraction of 
polymer, Vi is the molar volume of the solvent and 
N is Avogadro's number, to form the j - t h shell of 
the domain occupied by the polymer molecule. 
The total free energy of mixing is 

AF = X > ^ 
j 

We require the quant i ty 

dAF/da = ^(HAFi/da) = ( J / N ) ] [ > . j - nT)(<>nn/da) 

j j (5) 

where MJ and M? are the chemical potentials of 
solvent in the j-th. shell and of pure solvent, re­
spectively, and W1J represents the number of solvent 
molecules in the shell j ' . 

The partial molal entropy of dilution for a 
dilute solution of polymer segments located in an 
assigned region of space (e. g., situated with respect 
to a fixed center of gravity) may be assumed to be 
proportional to the square of the polymer concen­
tration. Thus1 5 

ASi" = fiRv* (6) 

where V2 is the volume fraction of polymer and 
(14) The second equality follows from the fact that si — i'o/G 

See P. Debye, J. Chem. Phys., 14, 636 (1946). 
(15) P. J. Flory and W. R. Krigbaum, ibid., 18, 10S6 (1950). 

^i is a parameter characterizing a given po lymer -
solvent pair. According to earlier theories based 
on the idealized lattice model16'17 AS1 — RvI/2, 
i. e., \pi = 1/2, irrespective of the polymer and 
solvent. I t has become apparent, both in the 
t rea tment of the results reported in a following 
paper18 and from osmotic investigations,19 tha t 
the entropy of dilution differs widely for a given 
polymer in different solvents. The empirical par­
ameter \pi has been introduced for this reason. 

The partial molal heat of dilution may be written 
in the familiar form 

A^1 = Bv1Vl = RTK ivl (7) 

where «i = Bv1ZRT replaces the former /U1 (not 
to be confused with chemical potential)20 and B 
is the usual parameter characterizing the net heat 
of interaction for the polymer-solvent pair. From 
equations (6) and (7) 

w,i - rf = RT(K1 - ,P1)Vh (8) 

The volume fraction of polymer in the j - t h layer 
is 

I'i.i = XjV/4Tra3Sj2 ASj 

= X V[PUaTrV*)* exp ( - /3JV) (9) 

where V is the volume of a segment. Also 

dtlu/da ^ 12ir«V^jN/Vi (10) 

Substi tuting equation (9) in (8), and (8) and (10) 
in (5), replacing the summation by an integral 
and integrating over Sj from 0 to <», there is ob­
tained 

dAF/da = 3^[2Tt)-3Mx2V1N/V1)ItT(K1 - ^ 1 ) / " 4 

where k is Boltzmann's constant. Replacing 
x V, the molecular volume of the polymer molecule, 
with Mv/N where v is the specific volume (or 
partial specific volume) of the polymer, and sub­
sti tuting from equation (4) for f3o, 

dAF/da = 6CMIIT(KI - ^1)M
1ZiZa* (11) 

where 
CM = (27/2'AT"A)(i;VNv,)(^/7?)!A (12) 

The configurational entropy 5ei of the chain 
may be treated according to the methods employed 
in the theory of rubber elasticity. Assuming tha t 
the average end-to-end distance for the chain 
and the root-mean-square distance of the segments 
from the center of gravity are distorted by the 
same factor a, the change in the configurational 
entropy with deformation is8 

d S e i / d a = -3k(a - 1 / a ) (13) 

Since the internal energy of the chain (apart from 
the energy of interaction of the chain with its 
environment) is assumed to be unaffected by de­
formation, a t equilibrium 

(dAF/da) - r(dSei/da) = 0 

Hence, according to equations (11) and (13) 
«5 - a3 = 2Cw(^i - K1)MVz (14) 

(16) M. L. Huggins, X Phys. Chem., 46, 151 U942); Ann. .V. Y. 
Acad. Sci,, 43, 1 (1942). 

(17) P. J. Flory, J. Chem. Phys., 10, 51 (1942). 
(18) T. G Fox, Jr., and P. J. Flory, THIS JOURNAL, 73, 1909 (1951). 
(19) M. J. Schick, P. M. Doty and B. H. Zimm, ibid., 72, 530 

(1950). 
(20) P. J. Flory J. Chem Phys., 17, 1347 (1949). 
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Or 
a5 - a* = 2CWiU - QfT)M1/' (15) 

where 9 «= KiT/fa is the critical temperature for 
total miscibility for a polymer homolog of infinite 
molecular weight in the same solvent.10,21 This 
follows from the fact that at T = 9 the second 
virial coefficient is equal to zero16,20 (and higher 
coefficients also are very nearly zero), while the 
first virial coefficient, 1/Af, vanishes as Af-»<». 
The parameter CM is identical with the CM which 
enters in the theory of intermolecular interactions 
developed for the treatment of the thermodynamic 
behavior of dilute polymer solutions.16,20 

Short Range Interactions and Polymer Chain 
Dimensions.—The above treatment is concerned 
only with interactions between pairs of segments 
which in general are remotely situated along the 
polymer chain. Short range steric interactions 
between neighboring, or near neighboring, seg­
ments or distortion due to hindrance to free 
rotation enter only as they affect the value of 
r\. Both K of equation (1) and CM depend on 
r\, hence determination of these parameters may 
lead to information concerning the intrinsic con-
figurational character of a given polymer chain. 

According to equation (1) and the discussion 
preceding it, K is proportional to Ve/M

,/'az. 
Since for sufficiently high molecular weights Ve 
assumes proportionality to the cube of the linear 
dimensions of the polymer coil, it is convenient 
to introduce a quantity $ defined by the rela­
tionship 

K = ^/M*1)*/* = *(78/ikf)'A (16) 
When M is large, $ (which includes the hydro-
dynamic factor of previous papers3'9'10) should 
attain a constant (maximum) value ;_failure of the 
proportionality between Ve and (r2)'/> at lower 
molecular weights will manifest itself as a decrease 
in $ with decrease in Af. FOT chains consisting 
of more than a few segments, rl/M is a constant 
characteristic of a given chain structure. Accord­
ing to experimental data previously published,10 

K for polyisobutylene is a constant independent 
of molecular weight for M> 50,000. It follows 
that $ possesses a value substantially equal to its 
asymptotic upper limit throughout the molecular 
weight range of interest. This circumstance 
greatly simplifies the treatment of intrinsic vis­
cosity data. 

Knowledge of the value of <3? would at once 
permit deduction of the structure parameter 
rl/M from K obtained in viscosity studies. Ex­
perimental evaluation of $ should be feasible using 
the following relationship derived from equations 
(1) and (16) 

* = [t,]M/(r*y/> (17) 

The mean-square end-to-end distance r2 may be 
determined from measurements on the angular 

(21) Equation (14) with ^i m 1/1 is exactly equivalent to equation 
(27) of reference (8). Thus Ci of the former paper reduces to CM 
M'/t/zV', where Z is the number of equivalent configurational seg­
ments (see ref. (8)) the introduction of which has been avoided here. 
Equation (15) is similarly equivalent to equation (6) of ref. (10) which 
appears here as equation (2). The symbol KI is used here in place of 
the former n\ as mentioned above. 

dissymmetry of scattered'light22; [JJ] must be 
measured in the same solvent at the same tempera­
ture. If the molecular weight also is known, 
$ may be calculated from (17). 

According to the hydrodynamic treatment of 
Kirkwood and Riseman,4 the intrinsic viscosity 
expressed in (g./lOO cc.) - 1 is given by 

[7,] = 0.0588(7r/6)V. NW)1A AT-i (18) 

provided that M insufficiently large for V, to be 
proportional to (rJ5)'/«. Introducing the factor 
a8 neglected by Kirkwood and Riseman and com­
paring with equations (1) and (16), $ = 3.6 X 
1021.23 Approximations employed in the develop­
ment of their theory cast doubt on the literal 
validity of the numerical factor in equation (18), 
and hence also on this value for $. The empirical 
expression derived by Kuhn and Kuhn24 from 
experiments on models yields a similar result, 
* = 3.4 X 1021, in the limit of large Af. 

Whatever the exact numerical value of $ may 
be, it is clearly evident that it should be the same 
for all polymers regardless of the solvent and tempera­
ture. Differences in the K'j_ for various polymers 
must reflect .differences in (rfi/M)'/', which may be 
written (r$/nMay/' where n is the number of chain 
bonds and Af0 is the molecular weight per bond. 
Thus, K for any given polymer will be determined 
solely by Af0 and_the "natural" degree of extension 
of the chain (r|/«) in the absence of thermo­
dynamic interaction. From knowledge of K 
and bond dimensions, information is at hand con­
cerning the influence on chain configuration of 
hindrances to rotation about the chain bonds. 
Since the effect of hindrances to rotation will 
change with temperature, K should, in general, 
depend somewhat on temperature. Conversely, 
it should be possible to secure information con­
cerning the barriers to free rotation from the 
magnitude of K and its temperature coefficient. 
On the other hand, at a given temperature K 
should be independent^ of the solvent according to 
equation (16), since r\ is the chain dimension in 
the absence of interactions between chain segments 
and their environment. 

In the special case of a simple chain comprised of 
n equivalent valence bonds each of length I0 joined 
at a fixed valence angle B 
Tl = nil [(I - cos«)/(l +cos0)][(l + cos<£)/(l - c o s * ) ] 

(19)25 

where <f> is the angle of rotation of a given bond 
measured from the plane defined by the two pre­
ceding bonds in the chain, and cos 4> designates the 
average value of cos <£; the potential hindering 
free rotation is assumed to be symmetric about 

(22) P. Debye, J. Pkys. Colloid Chem., 51, 18 (1947). 
(23) It is interesting to note that the radius of the spherical domain 

which is the hydrodynamic equivalent of an Einstein rigid sphere is 
approximately V s ! according to the results of Kirkwood-Riseman. 
Thus, if we assume that Re = V i 1 

M = 2.5 X l0-WVe/M = N(,r/30)a«(7?)V./Af 
and $ = 4.3 X 1021 in virtual agreement with the above value. 

(24) W. Kuhn and H. Kuhn, J\ Chem. Phys., 16, 838 (1948); 
HeIv. Chim. Acta, 30, 1233 (1947). 

(25) P. Debye, unpublished; W. J. Taylor, / . Chem. Phys., 15, 413 
(1947); H. Kuhn, ibid., 15, 843 (1947). 
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<t> = 0. For such a chain according to equation 
(16) 

K = *(V^o'/.)s[(l - cos 0)/(l -+• cos S)JVi 

X [(I + cos 0)/(l - cos «)]'/• (20) 

For a simple chain made up of identical bonds of 
length h and angle 0, the value of cos <j> may be 
deduced from K, provided 3? is known. _ 

The constant CM depends on (M/ri)'/' and on 
52/vi. Since the latter factor is relatively insensi­
tive to temperature, CM may be assumed to vary 
inversely as the change in K with temperature. 
CM is specifically dependent on the solvent through 
the molar volume V1, but it should be possible to 
calculate the CM for one solvent from that for 
another (at the same temperature) knowing their 
molar volumes. 

Methods for Treating Experimental Data.— 
Equations (1) and (15), together with CM as 
defined by (12), provide the essential basis for 
the treatment of intrinsic viscosity. Eliminat­
ing a between equations (1) and (15) and consider­
ing T and M to be known quantities, three param­
eters K, 9, and the product ^i CM remain to be 
determined from suitable experimental data. Since 
K is dependent only on the structure of the polymer 
and to some extent on T, its evaluation is a logical 
first objective; the other two parameters may then 
be determined readily for each solvent. 

The most straightforward determination of K 
requires only the measurement of the intrinsic 
viscosity of a polymer of known M in a poor solvent 
at the temperature T = Q. It follows from 
equation (15) that a3 = 1 at T = 9, hence accord­
ing to equation (1), if at this temperature is equal 
to [ri]/Ml/\ The value of 9 is determined by 
extrapolation of the linear relationship17 between 
the critical miscibility temperature Tc and M_1/' 
to M = °°, the precipitation measurements being 
carried out on a series of fractionated polymers. 
By choosing solvents with suitably differing 9's, 
it is possible to determine if as a function of tem­
perature in this manner. 

Having established the value of K for the given 
series of polymer homologs at a given temperature, 
both 9 and ^ICM for any given solvent may be 
evaluated from data on the dependence of [r;] 
on T in that solvent. From such data values of 
a3, and hence ab — a3, at each temperature 
are readily calculated by equation (1), employing 
the relationship of K to T established previously. 
According to equation (15) plots of KT/KO) (a5 — 
ai)/M1/l vs. l/T should be linear; the ratio 
(KT/KO) of K at T to its value at a reference 
temperature To is introduced in view of the tem­
perature dependence of CM noted previously. 
The reciprocal of G is given by the intercept of the 
straight line with the- l/T axis, and the product 
^i CM at T0 may be determined from the slope of this 
line, the latter being equal to 2^J.CM9. 

In cases where it is difficult to obtain accurate 

values of 9 or where it is inconvenient to carry out 
viscosity measurements at temperatures near 
9, values of K may be established from the relation­
ship of [ij] to M in a given solvent at a given tem­
perature. Solution of equation (1) for a and in­
sertion of the result into equation (15) yields the 
expression 

[ I J JVI /MVI = -STVi + A 'VIC T A// [TJ] (21) 

where 
CT = 2(AICM(I - 6 /D = (a5 - a3)/M1Zi (21a) 

Hence, a plot of [rt]1/'/Ml/' vs. M/[r\] in a given 
solvent at a particular temperature will be linear; 
K and CT are determined by the intercept at M/ 
[t)) = 0, and by the slope, respectively.26 If the 
[r\] vs. M data are available for several tempera­
tures, the dependence of K and of CT on tempera­
ture may be deduced. Values of 9 and ^i CM can 
be computed exactly as described in the preceding 
paragraph. 

It is noteworthy that the thermodynamic 
parameters governing the interaction of polymer 
segments with solvents, \pi and /ci, may be deter­
mined, at least in principle, solely from the measure­
ment of an irreversible kinetic process, the viscous 
flow of the polymer solution through a capillary 
tube. Thus, values of \p\ and /ci may be calculated 
from ^ICM and 9 determined by the procedure 
described above, and the relationship 9 = KiT/\j/u 
provided that the value of CM is known. The 
latter may be_calculated from equation (12) and 
the value of r$/M, assuming that the numerical 
factor in this equation, based on approximate 
theory, is sufficiently accurate for this purpose. 
In principle, rl/M may be calculated from vis­
cosity data alone by equation (16) employing the 
theoretically estimated value of $ given above. 
Values of CM, i>\ and *i obtained in this manner 
must, of course, be considered provisional until 
$ and the numerical coefficient of equation (12) 
are established with certainty. One of the sources 
of uncertainty^ but not both, can be eliminated if 
the value of r\ is determined independently from 
the dissymmetry of scattered light for a dilute 
solution of a polymer of known ilf.22 In either 
case, the value of \pi and «i for various solvents 
should be correct relative to one another. Ab­
solute values of these parameters may be deter­
mined from viscosity data if the value of \pi for one 
of the solvents is determined independently from 
thermodynamic studies of dilute solutions of the 
polymer, e. g., from osmotic pressure or turbidity 
measurements at different temperatures. Vis­
cosity and thermodynamic measurements afford 
mutually supplementary data for the elucidation 
of parameters pertaining to polymer-solvent inter­
actions in dilute solutions.15 
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(26) This graphical procedure was suggested by Dr. J. R. Schaefgen 
of The Goodyear Research Laboratory. An analogous analytical 
method was employed in reference (10). 


